Matrix inverses

Def: If A is a square matrix, then a matrix B is an inverse of A if $A B=I$ and $B A=I$. If A has an inverse, Then it is invertible.

Ex: $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], \quad B=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$
Then $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
So B is an inverse of A, and A is an inverse of B.

Ex: Does $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]$ have an inverse? If $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an arbitrary matrix, then
$A B=\left[\begin{array}{cc}c & d \\ 2 c & 2 d\end{array}\right]$. But this is never I, since we can't have $c=1,2 c=0$. Thus A is not invertible.

Is it possibe for a matrix to have 2 different inverses?

Suppose a matrix A has inverses B and C. Then

$$
B=I B=(C A) B=C(A B)=C I=C
$$

So $B=C$. That is, we 've proven the following:

Theorem: If B and C are both inverses of A, then $B=C$.
That is, inverses are unique.

When A is invertible, the unique inverse is denoted A^{-1}.

Inverses of 2×2 matrices
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
Def: The determinant of A is

$$
\operatorname{det} A=a d-b c
$$

The adjugate of A is the matrix

$$
\operatorname{adj} A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

We want to find conditions of A that make it invertible.

First notice the following:

$$
A(\operatorname{adj} A)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]=(\operatorname{adj} A) A
$$

$a d-b c=\operatorname{det} A$, so as long as $\operatorname{det} A \neq 0$, we can divide through and get $A\left(\frac{1}{\operatorname{det} A} \operatorname{adj} A\right)=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}\operatorname{det} A & 0 \\ 0 & \operatorname{det} A\end{array}\right]=I$.

We summarize this in the following theorem:

Theorem: If A is a 2×2 matrix, then it is invertible if and only if $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0$, then its inverse is

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A .
$$

Later we will see how to give similar criteria for any square matrix.

Ex: $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 7\end{array}\right]$ has $\operatorname{det} A=17$, so it's invertible, and $A^{-1}=\frac{1}{17}\left[\begin{array}{cc}7 & -3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 / 17 & -3 / 17 \\ 1 / 17 & 2 / 17\end{array}\right]$

Ex: $A=\left[\begin{array}{cc}1 & 2 \\ -3 & -6\end{array}\right]$ Then $\operatorname{det} A=0$, so A is not invertible.

Inverses and systems of equations

Recall that we can write a system of m equations in n variables as

If A is an $n \times n$ invertible matrix (n equations + variables)
then

$$
\begin{aligned}
A^{-1} A \vec{x} & =A^{-1} \stackrel{\rightharpoonup}{b} \\
\Rightarrow \quad I \vec{x} & =A^{-1} \stackrel{\rightharpoonup}{b} \\
\Rightarrow \quad \vec{x} & =\underbrace{A^{-1} \stackrel{\rightharpoonup}{b}}_{n-\text { vector }}
\end{aligned}
$$

So $\vec{x}=A^{-1} \vec{b}$ is a solution to the system. Moreover, it's the only solution. We summarize this in a theorem:

Theorem: Let $A \vec{x}=\vec{b}$ be a system of n equations in n variables. If A is invertible, then the system has the unique solution $\vec{x}=A^{-1} \vec{b}$.

Ex: Consider the system

$$
\begin{array}{r}
x+2 y=3 \\
-x+4 y=5
\end{array}
$$

We can rewrite this as

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

A
$\operatorname{det} A=4+2=6$, so A is invertible, and
$A^{-1}=\frac{1}{6}\left[\begin{array}{cc}4 & -2 \\ 1 & 1\end{array}\right]$, so the system has unique solution

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
2 \\
8
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
4 / 3
\end{array}\right]} \\
& \text { i.e. } \quad x=1 / 3, y=4 / 3 .
\end{aligned}
$$

Inverting $n \times n$ matrices

If A is an $n \times n$ invertible matrix, then we can go from $A \longrightarrow I_{n}$ via a sequence of elementary now operations. It turns out, the same sequence of wow operations takes $I_{n} \rightarrow A^{-1}$. That is, if we write A and I_{n} as blocks of a matrix, we have

$$
\left[\begin{array}{ll}
A & I
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]
$$

If A can't be brought to I, it is not invertible. If it com, it is.

We will see why this works in section 2.5, but for now we see how.

$$
\begin{aligned}
& \text { Ex: Let } A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 0 & 1 \\
0 & 4 & 2
\end{array}\right] \\
& {[A} \\
& {\left[\begin{array}{ll}
I
\end{array}\right]=\left[\begin{array}{llr|lrr}
1 & 1 & -1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 \\
0 & 4 & 2 & 0 & 0 & 1
\end{array}\right] \xrightarrow{(2)-2(1)}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & 0 & 0 \\
0 & -2 & 3 & -2 & 1 & 0 \\
0 & 4 & 2 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\text { So } A^{-1}=\frac{1}{16}\left[\begin{array}{ccc}
4 & 6 & 5 \\
4 & -2 & 3 \\
-8 & 4 & 2
\end{array}\right]
$$

Some properties of invertible matrices
(1.) If A is invertible, and $A B=A C$, then

$$
A^{-1} A B=A^{-1} A C \Rightarrow B=C \text {. "left cancellation" }
$$

Right cancellation works too.
(2.) If A is invertible, then we com show A^{T} is invertible too, and $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$:

$$
\begin{aligned}
& \xrightarrow{-\frac{1}{2}(2)}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & 0 & 0 \\
0 & 1 & -3 / 2 & 1 & -1 / 2 & 0 \\
0 & 4 & 2 & 0 & 0 & 1
\end{array}\right] \xrightarrow{(3)-4(2)}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & 0 & 0 \\
0 & 1 & -3 / 2 & 1 & -1 / 2 & 0 \\
0 & 0 & 8 & -4 & 2 & 1
\end{array}\right] \\
& \xrightarrow{\frac{1}{8}(3)}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & 0 & 0 \\
0 & 1 & -3 / 2 & 1 & -1 / 2 & 0 \\
0 & 0 & 1 & -1 / 2 & 1 / 4 & 1 / 8
\end{array}\right] \xrightarrow{\left(2+\frac{3}{2}(3)\right.}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 / 4 & -1 / 8 & 3 / 16 \\
0 & 0 & 1 & -1 / 2 & 1 / 4 & 1 / 8
\end{array}\right] \\
& \xrightarrow{\text { (1) +(3) }}\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 / 2 & 1 / 4 & 1 / 8 \\
0 & 1 & 0 & 1 / 4 & -1 / 8 & 3 / 16 \\
0 & 0 & 1 & -1 / 2 & 1 / 4 & 1 / 8
\end{array}\right] \xrightarrow{(1)-(6)}\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 / 4 & 3 / 8 & 5 / 16 \\
0 & 1 & 0 & 1 / 4 & -1 / 8 & 3 / 16 \\
0 & 0 & 1 & \underbrace{}_{I} 1 / 2 & 1 / 4 & 1 / 8
\end{array}\right]
\end{aligned}
$$

$$
A^{\top}\left(A^{-1}\right)^{\top}=\left(A^{-1} A\right)^{\top}=I^{\top}=I .
$$

similarly, $\left(A^{-1}\right)^{\top} A^{\top}=I$, so $\left(A^{-1}\right)^{\top}$ is the inverse of A^{\top}.
(3.) If A and B are both invertible $n \times n$ matrices, then

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I
$$

Similarly, $\left(B^{-1} A^{-1}\right)(A B)=I$, so

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(4.) $\left(A^{-1}\right)^{-1}=A$
(5.) If A is invertible, and $k \neq O$ a real number, then $(k A)^{-1}=\frac{1}{k} A^{-1}$.

We have already seen some connections between invertibility, systems of equations, and now operations. We summarize these connections in the following theorem, the most important theorem so far:

Theorem: Let A be an $n \times n$ matrix. The following five conditions are equivalent:
(1.) A is invertible.
2.) The system $A \vec{x}=\overrightarrow{0}$ has only the trivial solution $\vec{x}=\overrightarrow{0}$.
3. $A \rightarrow I_{n}$ via elementary row operations.
4.) $A \vec{x}=\vec{b}$ has at least one solution for every vector \vec{b}.
5.) There is an $n \times n$ matrix C such that $A C=I$.

Proof: We'll show that each of these implies the next and 5. $\rightarrow 1$:
1.) $\Rightarrow 2.2$: If A is invertible, then for any solution \vec{x} of $A \vec{x}=\overrightarrow{0}$, we have $A^{-1} A \vec{x}=\vec{A} \overrightarrow{0}$

$$
\begin{aligned}
& \Rightarrow I \vec{x}=\vec{O} \\
& \Rightarrow \vec{x}=\overrightarrow{0}
\end{aligned}
$$

so the only solution is $\quad \vec{x}=\overrightarrow{0}$.
$2.1 \Rightarrow$ 3.): If [2.] is true, then A must have rank n, so we can go from $A \rightarrow I$ via now operations.
[3.1 $\Longrightarrow 4.1:$ Take the augmented matrix $[A \mid \vec{b}]$.
Then $[3.1$ says we can go from $[A \mid \vec{b}] \rightarrow[I \mid \vec{c}]$ for some \vec{c}. Thus $\vec{x}=\vec{c}$ is a solution.
(4.) $\Rightarrow 5.5:$ For each i, let \vec{e}_{i} be the i th column of
I. Then, by 4.7,
$A \vec{x}=\vec{e}_{i}$ has a solution, call it \vec{c}_{i}.
So $A \vec{c}_{i}=\vec{e}_{i}$. Take $C=\left[\begin{array}{llll}\vec{c}_{1} & \vec{C}_{2} & \vec{C}_{n}\end{array}\right]$ to be the matrix with the \vec{C}_{i} 's as columns. Then

$$
\begin{aligned}
A C & =A\left[\begin{array}{llll}
\vec{c}_{1} & \vec{c}_{2} & \ldots & \vec{c}_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A \vec{c}_{1} & A \vec{c}_{2} & \ldots & A \vec{c}_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\vec{e}_{1} & \vec{e}_{2} & \ldots & \vec{e}_{n}
\end{array}\right]=I .
\end{aligned}
$$

[5.] $\Rightarrow 1$. Assume $A C=I$.
Then the system $C \vec{x}=\vec{O}$ has only the trivial solution $\vec{x}=I_{n} \vec{x}=A C \vec{x}=A \overrightarrow{0}=\overrightarrow{0}$.

So [2.) holds for C. Thus, since [2.] \Rightarrow [5.], There is a matrix C^{\prime} such that $C C^{\prime}=I$.

So $A=A I=A\left(C C^{\prime}\right)=(A C) C^{\prime}=I C^{\prime}=C^{\prime}$.
so $A C=C A=I$, so A is invertible, and $C=A^{-1}$. \square

Note that this shows we only need to check inverses on one side. i.e. if $A C=I_{n}$ then A is invertible and $A^{-1}=C$.

Inverses of transformations

Let A be a square matrix and $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the induced transformation.

Question: If A is invertible, what does that tell us about T_{A} ?

Consider $T_{A^{-1}}$, the transformation induced by A^{-1}. Then for any \vec{x} in \mathbb{R}^{n}, we have

$$
T_{A^{-1}}\left(T_{A}(\vec{x})\right)=A^{-1}(A \vec{x})=I_{n} \vec{x}=\vec{x} \text {, and } T_{A}\left(T_{A^{-1}}(\vec{x})\right)=\vec{x}
$$

That is, $T_{A^{-1}} \circ T_{A}=I_{\mathbb{R}^{n}}=T_{A} \circ T_{A^{-1}}$
$T_{A^{-1}}$ is called an inverse function of T_{A}.

The converse holds as well (check this!). We summarize this as follows:

Theorem: If A is an $n \times n$ matrix and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the induced transformation, then A is invertible if and only if T has an inverse. In this case, $T^{-1}=T_{A^{-1}}$.

Practice problems: $2.4: 2 a c h, 3 c, 4,5 c \mathrm{fh}, 16$

