Matrix inverses

Def: If A is a square matrix, then a matrix B is an inverse of A if AB=I and BA=I. If A has an inverse, Then it is <u>invertible</u>.

Ex:
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$

Then $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
So B is an inverse of A, and A is an inverse of B.

Ex: Does
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$$
 have an inverse? If $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is
an arbitrary matrix, then

$$AB = \begin{bmatrix} c & d \\ 2c & 2d \end{bmatrix}$$
. But this is never I , since we can't
have $c = 1$, $2c = 0$. Thus A is not invertible.

Is it possible for a matrix to have 2 different inverses?

Suppose a matrix A has inverses B and C. Then B = IB = (CA)B = C(AB) = CI = C.

So B=C. That is, we've proven the following:

Theorem: If B and C are both inverses of A, then B=C. That is, inverses are unique.

When A is invertible, the unique inverse is denoted A.

Inverses of
$$2 \times 2$$
 matrices
Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
Def: The determinant of A is
 $det A = ad - bc$

The adjugate of A is the matrix
adj
$$A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
.

We want to find conditions of A that make it invertible.

First notice the following:

$$A(adjA) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} ad-bc & 0 \\ 0 & ad-bc \end{bmatrix} = (adjA)A$$

ad - bc = det A, so as long as det A = O, we can divide through and get $A\left(\frac{1}{de+A} \text{ ad } jA\right) = \frac{1}{de+A} \left(\frac{de+A}{o} \text{ de+A}\right) = I$. We summarize this in the following theorem:

Theorem: If A is a 2×2 matrix, then it is invertible if
and only if detA =0. If detA =0, then its inverse is
$$A^{-1} = \frac{1}{detA}$$
 adj A.

Later we will see how to give similar criteria for any square matrix.

EX:
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 7 \end{bmatrix}$$
 has $det A = 1^{7}$, so it's invertible,
and $A^{-1} = \frac{1}{17} \begin{bmatrix} 7 & -3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7/17 & -3/7 \\ 1/17 & 2/17 \end{bmatrix}$
EX: $A = \begin{bmatrix} 1 & 2 \\ -3 & -6 \end{bmatrix}$ Then $det A = 0$, so A is not invertible.

Inverses and systems of equations

Recall that we can write a system of m equations in n variables as

If A is an nxn invertible matrix (nequations + variables) then

$$A^{-1}A\vec{x} = A^{-1}\vec{b}$$

$$\Rightarrow \quad \vec{x} = A^{-1}\vec{b}$$

$$\Rightarrow \quad \vec{x} = A^{-1}\vec{b}$$

$$n - vector$$

So $\vec{x} = A^{-1}\vec{b}$ is a solution to the system. Moreover, it's the only solution. We summarize this in a theorem:

Theorem: let $A\vec{x} = \vec{b}$ be a system of h equations in nvariables. If A is invertible, then the system has the unique solution $\vec{x} = A^{-1}\vec{b}$.

Ex: consider the system

$$x + 2y = 3$$

 $-x + 4y = 5$

We can rewrite this as

$$\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

det A = 4+2=6, so A is invertible, and $A^{-1} = \frac{1}{6} \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}$, so the system has unique solution

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{4}{3} \end{bmatrix}$$

i.e. $x = \frac{1}{3}$, $y = \frac{4}{3}$.
Inverting hxn matrices

If A is an n×n invertible matrix, then we can go from $A \longrightarrow I_n$ via a sequence of elementary row operations. It turns out, the same sequence of row operations takes $I_n \longrightarrow A^{-1}$. That is, if we write A and I_n as blocks of a matrix, we have

$$\begin{bmatrix} A & \bot \end{bmatrix} \longrightarrow \begin{bmatrix} I & A^{-'} \end{bmatrix}$$

If A can't be brought to I, it is not invertible. If it com, it is.

We will see why this works in section 2.5, but for now we see how.

EX: Let
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 0 & 4 & 2 \end{bmatrix}$$
.
 $\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & | & 1 & 0 & 0 \\ 2 & 0 & | & | & 0 & 1 & 0 \\ 0 & 4 & 2 & | & 0 & 1 \end{bmatrix} \xrightarrow{\bigcirc} \begin{bmatrix} 2 - 20 \\ 0 & -2 & 3 \\ 0 & -2 & 3 \\ 0 & 4 & 2 & | & 0 & 0 \end{bmatrix}$

Some properties of invertible matrices

(i) If A is invertible, and AB = AC, then $A^{-1}AB = A^{-1}AC \implies B = C$. "left cancellation"

Right concellation works too.

(2) If A is invertible, then we can show A^{T} is invertible too, and $(A^{T})^{-1} = (A^{-1})^{T}$:

$$A^{\mathsf{T}} \left(A^{-1} \right)^{\mathsf{T}} = \left(A^{-1} A \right)^{\mathsf{T}} = \mathbb{I}^{\mathsf{T}} = \mathbb{I}.$$

Similarly, $(A^{-1})^T A^T = I$, so $(A^{-1})^T$ is the inverse of A^T .

(3) If A and B are both invertible n×n matrices, then $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$ Similarly, $(B^{-1}A^{-1})(AB) = I$, so $(AB)^{-1} = B^{-1}A^{-1}$

(4) $(A^{-1})^{-1} = A$

(kA)⁻¹ = $\frac{1}{k}A^{-1}$.

We have already seen some connections between invertibility, systems of equations, and now operations. We summarize these connections in the following theorem, the most important measurem so far:

Theorem: let A be an nxn matrix. The following five conditions are equivalent:

L.

so the only solution is $\vec{r} = \vec{0}$.

2. \Rightarrow 3.1: If 2. is true, then A must have rank h, so we can go from $A \rightarrow I$ via now operations.

[4.] ⇒ 5.]: For each i, let e; be the it column of

I. Then, by $[\underline{t}]$, $A \vec{x} = \vec{e};$ has a solution, call if \vec{c}_i . So $A \vec{c}_i = \vec{e}_i$. Take $C = (\vec{c}_1 \ \vec{c}_2 \ ... \ \vec{c}_n)$ to be the matrix with the \vec{c}_i 's as columns. Then $A C = A [\vec{c}_1 \ \vec{c}_2 \ ... \ \vec{c}_n]$ $= [A \vec{c}_1 \ A \vec{c}_2 \ ... \ A \vec{c}_n] = I.$

 $\overline{5.1} \Rightarrow \overline{1.1}$ Assume $AC = \overline{1.1}$ Then the system $C\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \overline{1}_n \vec{x} = AC\vec{x} = A\vec{0} = \vec{0}.$

So $[\overline{2}.]$ holds for C. Thus, since $[\overline{2}.] \Rightarrow [\overline{5}.]$, There is a matrix C' such that CC' = T. So A = AT = A(CC') = (AC)C' = TC' = C'.

so AC = CA = I, so A is invertible, and C = A⁻¹. []

Note that this shows we only need to check inverses on one side. i.e. if $AC=I_n$ then A is invertible and $A^{-1}=C$.

Inverses of transformations

Let A be a square matrix and $T_A : \mathbb{R}^n \to \mathbb{R}^n$ the induced transformation.

Question: If A is invertible, what does that tell us about TA?

Consider
$$T_{A^{-1}}$$
, the transformation induced by A^{-1} .
Then for any \vec{x} in \mathbb{R}^{h} , we have
 $T_{A^{-1}}(T_{A}(\vec{x})) = A^{-1}(A\vec{x}) = T_{n}\vec{x} = \vec{x}$, and $T_{A}(T_{A^{-1}}(\vec{x})) = \vec{x}$.
That is, $T_{A^{-1}} \circ T_{A} = 1_{\mathbb{R}^{h}} = T_{A} \circ T_{A^{-1}}$
identity
transformation
 $T_{A^{-1}}$ is called an inverse function of T_{A} .
The converse holds as well (check this!). We
summarize This as follows:

Theorem: If A is an $h \times h$ matrix and $T: \mathbb{R}^{h} \to \mathbb{R}$ the induced transformation, then A is invertible if and only if T has an inverse. In this case, $T^{-1} = T_{A^{-1}}$.

Practice problems: 2.4: 2ach, 3c, 4, 5cfh, 16